

Preserve then Quantize: Dominant-Subspace Guided Low-Rank Reconstruction

Yoonjun Cho*, Dongjae Jeon*, Soeun Kim, Albert No

Preliminary

- Quantization Error Reconstruction (QER):
 - Approximates the quantization error (W Q) with a low-rank term **LR**.
 - Activation statistics can be incorporated via a scaling matrix S.
 - LR is computed by SVD of scaled error $\mathbf{S} E_q(\mathbf{W}) := \mathbf{S}(\mathbf{W} \mathbf{Q})$
- Quantized Parameter-Efficient Fine-Tuning (QPEFT):
 - Only the low-rank LR is updated for downstream tasks, keeping Q fixed.

Is Quantization Error Sufficiently Low-Rank?

■ Problem:

- The scaled error $\mathbf{S} E_q(\mathbf{W})$ is often not low-rank.
- LR captures only a small portion of the error, resulting suboptimality

Capture Low-rank First, then Quantize Residual

Structured Residual Reconstruction (SRR):

- Dominant directions are preserved explicitly.
- Quantization error remains small (only the low-energy tail is quantized).

$$\mathbf{W} = \mathbf{U}_h \mathbf{\Sigma}_h \mathbf{V}_h^ op + \mathbf{U}_\ell \mathbf{\Sigma}_\ell \mathbf{V}_\ell^ op$$
 $\mathbf{Q} := \mathcal{Q} \left(\mathbf{U}_\ell \mathbf{\Sigma}_\ell \mathbf{V}_\ell^ op
ight)$
 $\mathbf{LR} \leftarrow \mathbf{W} - \mathbf{Q} = \mathbf{U}_h \mathbf{\Sigma}_h \mathbf{V}_h^ op + \mathbf{E}_q \left(\mathbf{U}_\ell \mathbf{\Sigma}_\ell \mathbf{V}_\ell^ op
ight)$
 $(1) \text{ preserved}$
 $(2) \text{ yields}$
 top-ranks

SRR vs. QER: When It Works and When It Fails

• SRR outperforms QER when activation-statistics are not used (S = I).

SRR vs. QER: When It Works and When It Fails

• Performance drops when activation-statistics are applied ($S \neq I$).

Mismatch with Activation-Statistics

- With activation statistics, quantization targets the component mapped back to W-space, not the low-energy tail of SW.
 - $\mathbf{S} = \mathbf{I}$ (SRR outperforms)

$$\mathbf{W} - \mathbf{Q} = \underbrace{\mathbf{U}_h \mathbf{\Sigma}_h \mathbf{V}_h^{\top}}_{\text{(1) preserved top-ranks}} + \underbrace{\mathbf{E}_q \left(\mathbf{U}_{\ell} \mathbf{\Sigma}_{\ell} \mathbf{V}_{\ell}^{\top} \right)}_{\text{(2) yields small error}}$$

• $\mathbf{S}
eq \mathbf{I}$ (SRR fails)

$$\mathbf{S}(\mathbf{W} - \mathbf{Q}) = \underbrace{\frac{\mathbf{U}_h \mathbf{\Sigma}_h \mathbf{V}_h^{\top}}{\text{(1) preserved top-ranks}}}_{\text{(2) Unknown}} + \mathbf{S} \underbrace{\mathbf{E}_q \left(\mathbf{S}^{-1} \mathbf{U}_{\ell} \mathbf{\Sigma}_{\ell} \mathbf{V}_{\ell}^{\top} \right)}_{\text{(2) Unknown}}$$

Adaptive Strategy: Select Aligned Directions

Only dominant directions in **SW** that are also important in **W** are preserved.

$$\mathbf{SW} = \sum_{i=1}^n \sigma_i u_i v_i^ op,$$

 $score_i = \sigma_i || \mathbf{S}^{-1} u_i ||_2$. How each direction in **SW** contributes to **W**

$$\mathcal{H} := [r] \cap \mathrm{Top} ext{-}r(\mathrm{score}_i) \quad \mathcal{L} := [n] \setminus \mathcal{H}$$

$$\mathbf{SW} = \underbrace{\mathbf{U}_{\mathcal{H}} \mathbf{\Sigma}_{\mathcal{H}} \mathbf{V}_{\mathcal{H}}^{\top} + \mathbf{U}_{\mathcal{L}} \mathbf{\Sigma}_{\mathcal{L}} \mathbf{V}_{\mathcal{L}}^{\top}}_{\text{(1) preserved top-ranks}}^{\text{(2) only quantized}}$$
 Final decomposition

Adaptive SRR Wins QER

■ **SRR** with the adaptive strategy outperforms **QER** in over **90%** of cases under optimal activation-statistics (QERA-exact¹).

Method	Gemma-	2 2B	LLaMA-2 7B			
Michiga	Win-rate (↑)	$\mathbf{PPL}(\downarrow)$	Win-rate (↑)	$\mathbf{PPL}(\downarrow)$		
QERA-exact	-	19.36	-	10.68		
w/ SRR (Naive)	76.37%	19.07	83.93%	10.61		
w/ SRR (Adaptive)	89.56%	18.65	95.98%	10.53		

(a) **Win-rate**: fraction of layers with lower reconstruction loss than QER (3-bit, r = 64).

¹Zhang, Cheng, et al, "Qera: an analytical framework for quantization error reconstruction.", ICLR, 2025.

PTQ results

■ SRR outperforms under various scaling matrices S.

		Method	TinyLlama 1.1B		Gemma-2 2B		LLaMA-2 7B		LLaMA-2 13B		LLaMA-3.1 8B		
		Wethod	r = 32	r = 64	r = 32	r = 64	r = 32	r = 64	r = 32	r = 64	r = 32	r = 64	
		BF16	13.98		13.08		8.71		7.68		7.55		
		w-only	32.	32.82		41.13		13.33		10.25		18.96	
		ZeroQuant-V2 (Yao et al. 2024)	28.31	25.90	36.27	33.09	13.18	12.99	10.04	10.03	20.09	19.28	
Bits		w/ SRR	31.93	25.18	26.77	24.71	15.36	13.30	11.43	10.97	20.95	18.44	
l B		LQER (Zhang et al. 2024a)	21.95	20.63	22.99	21.37	14.51	15.14	9.18	9.13	12.39	11.90	
zati	3.25	w/ SRR	21.10	19.86	22.61	21.02	11.24	11.05	9.12	9.00	12.27	11.76	
anti		QERA-approx (Zhang et al. 2025)	21.68	20.52	23.31	21.83	11.15	10.99	9.11	9.04	12.51	11.72	
5		w/ SRR	20.83	19.54	22.02	19.98	10.92	10.75	9.05	8.95	11.99	11.45	
		QERA-exact (Zhang et al. 2025)	20.10	19.59	20.10	19.36	10.84	10.68	9.04	8.97	11.37	11.00	
		w/ SRR	19.61	18.70	19.55	18.65	10.76	10.53	9.01	8.90	11.20	10.74	

(b) Perplexity (\downarrow) on WikiText2 with 3-bit MXINT quantizer under two low-rank settings (r = 32, 64).

PTQ in Iterative setting

■ SRR shows consistent gains across iterations.

	Method	TinyLlama 1.1B			Gemma-2 2B			LLaMA-2 7B			LLaMA-3.1 8B		
	Wiethou	i = 1	i = 5	i = 10	i = 1	i = 5	i = 10	i=1	i = 5	i = 10	i = 1	i = 5	i = 10
r = 32	QERA-exact	20.10	19.41	19.15	19.59	18.89	18.83	10.84	10.69	10.63	11.37	11.04	10.97
r = 32	w/ SRR	19.61	18.88	18.56	19.55	18.60	18.35	10.76	10.63	10.54	11.20	10.90	10.84
r = 64	QERA-exact	19.23	18.22	17.93	19.36	17.96	17.73	10.68	10.48	10.44	11.00	10.60	10.51
r = 04	w/ SRR	18.70	17.77	17.58	18.65	17.33	17.00	10.53	10.37	10.30	10.76	10.39	10.28

(c) Perplexity (\downarrow) on WikiText2 with 3-bit MXINT after i=1, 5, and 10 reconstruction steps. **SRR** vs. **QER** at ranks r=32 and 64; best values in **bold**.

Applying SRR to QPEFT

Fixed dominant directions; only residual subspace is updated.

$$\mathcal{H} := [r] \cap ext{Top-}r(ext{score}_i) \ k = |\mathcal{H}|$$

Top-k directions dominate in both **SW** and **W**, but tuning them often degrades performance.

QPEFT results

■ SRR outperforms baselines on GLUE across various bit-widths.

	Method	Rank	MNLI	QNLI	RTE	SST	MRPC	CoLA	QQP	STSB	Avg.	
	Wiethod	Kalik	Acc.	Acc.	Acc.	Acc.	Acc.	Matt.	Acc.	P/S Corr.	Avg.	
91	Full FT	-	87.62	93.03	76.53	95.18	89.95	61.79	91.55	90.28/90.05	85.73	
1	LoRA (Hu et al., 2022)	8	87.59	92.68	72.76	95.07	89.76	61.08	90.95	90.09/89.84	84.92	
	QLoRA (Dettmers et al., 2023)		86.91	92.29	66.06	94.15	86.76	56.24	90.45	88.95/88.82	82.72	
	LoftQ (Li et al., 2023)		87.13	91.63	64.26	93.46	87.75	59.07	90.46	88.95/88.84	82.83	
4.25	QERA (Zhang et al., 2025)	8	87.07	92.20	64.98	94.15	87.99	58.55	90.45	89.86/89.68	83.14	
4	LQ-LoRA (Guo et al., 2024)		85.89	90.96	54.15	92.32	82.35	42.60	88.67	85.89/85.73	77.84	
	SRR		87.09	92.64	72.20	94.84	88.48	60.58	90.48	90.06/89.77	84.53	
	QLoRA (Dettmers et al., 2023)		86.14	90.76	54.87	90.83	78.92	10.83	89.91	86.77/86.28	73.60	
	LoftQ (Li et al., 2023)		86.38	90.24	57.04	91.63	81.13	14.52	89.27	86.55/86.24	74.58	
3.25	QERA (Zhang et al., 2025)	8	86.49	89.46	57.40	91.74	84.56	28.98	89.26	87.90/87.61	76.95	
6,	LQ-LoRA (Guo et al., 2024)		84.70	88.74	54.51	91.63	74.75	24.37	87.61	85.16/85.31	73.95	
	SRR		86.06	91.87	59.93	93.46	87.50	50.11	90.01	87.97/87.50	80.84	
	QLoRA (Dettmers et al., 2023)		78.58	85.34	50.98	89.22	68.63	0	88.08	66.14/66.35	65.88	
_	LoftQ (Li et al., 2023)		81.30	86.63	50.37	91.06	71.08	0	88.48	82.63/82.85	68.96	
2.50	QERA (Zhang et al., 2025)	64	84.24	88.61	54.25	90.83	81.37	21.93	89.48	83.61/83.51	74.28	
'`	LQ-LoRA (Guo et al., 2024)		83.33	87.26	52.71	89.79	71.83	0	88.32	78.45/79.39	69.02	
	SRR		85.64	90.96	59.57	92.89	85.78	38.22	90.24	87.43/87.13	78.82	

QPEFT results (Cont'd)

		Method	Rank	LLaMA-2 7B (Δ_{acc})
	16	LoRA (Hu et al., 2022)	64	35.41
		QLoRA (Dettmers et al., 2023)		32.21
S		LoftQ (Li et al., 2023)		28.35
Bit	4.25	QERA (Zhang et al., 2025)	64	32.13
00	4	LQ-LoRA (Guo et al., 2024)		29.82
Quantization Bits		SRR		32.87
nti		QLoRA (Dettmers et al., 2023)		14.03
)na	_	LoftQ (Li et al., 2023)		15.69
	2.50	QERA (Zhang et al., 2025)	64	18.76
	~	LQ-LoRA (Guo et al., 2024)		16.67
		SRR		18.95

(d) GSM8K results for LLaMA-2 7B fine-tuned with PEFT under 4-/2-bit MXINT (block size 16/32, rank 64). LoftQ and LQ-LoRA use 5 iterations. Best accuracy in **bold**