

Privacy Issues in DGMs: How to detect & mitigate

Dongjae Jeon

Paper: Icml link

1. Detailed Background on Diffusion Model

Image = 1024 sized vector = lives in 1024 **p(x)** (we don't know)

1. Detailed Background on Diffusion Model

Image = 1024 sized vector = lives in 1024 **p(x)** (we don't know)

Do this in every time t

 $|p_{t|t-1}(x_t \mid x_{t-1})| = \mathcal{N}(x_t; |x_{t-1}, I)$

Gaussian convolution demo: https://phiresky.github.io/convolution-demo/

$$p_{t|t-1}(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \; x_{t-1}, I)$$
 Variance Exploding $p_{t|t-1}(x_t \mid x_{t-1}) = \mathcal{N}\Big(x_t; \; \sqrt{1-eta_t} \, x_{t-1}, \, eta_t I\Big)$ Variance Preserving Our interest

$$egin{aligned} p_{t|t-1}(x_t \mid x_{t-1}) &= \mathcal{N}\!\!\left(x_t;\, \sqrt{1-eta_t}\, x_{t-1},\, eta_t I
ight) \end{aligned}$$

 $p_{1000}(x) = \mathcal{N}(0,I)$ No matter what p0(x) is.

$$p_{1000}(x)=\mathcal{N}(0,I)$$

Sample $k \sim \mathcal{N}(0,I)$ (What we can sample.)

$$egin{aligned} p_{t|t-1}(x_t \mid x_{t-1}) &= \mathcal{N}\!\!\left(x_t;\, \sqrt{1-eta_t}\, x_{t-1},\, eta_t I
ight) \end{aligned}$$

$$oxed{p_{t-1|t}(x_{t-1}|x_t)} pprox \mathcal{N}ig(x_{t-1};\,BLANK,\, ilde{eta}_t Iig)$$

Tweedie's formula

$$BLANK = rac{1}{\sqrt{1-eta_t}}igg(x_t + eta_n rac{\partial}{\partial x_t} \log p_t\!(x_t)igg)$$

tweedie: https://efron.ckirby.su.domains/papers/2011TweediesFormula.pdf

$$egin{aligned} p_{t|t-1}(x_t \mid x_{t-1}) &= \mathcal{N}\!\!\left(x_t;\, \sqrt{1-eta_t}\, x_{t-1},\, eta_t I
ight) \end{aligned}$$

$$oxed{p_{t-1|t}(x_{t-1}|x_t)} pprox \mathcal{N}ig(x_{t-1};\,BLANK,\, ilde{eta}_t Iig)$$

Tweedie's formula

$$BLANK = rac{1}{\sqrt{1-eta_t}}igg(x_t+eta_nrac{\partial}{\partial x_t}\log p_t\!(x_t)igg) ext{Neural Network} s_tig(x_t,tig)$$

$$p_{1000}(x)=\mathcal{N}(0,I)$$

 ${
m Sample} \;\; k \sim \mathcal{N}(0,I) \;$ (What we can easily sample)

Tweedie's formula

$$BLANK = egin{array}{c} rac{1}{\sqrt{1-eta_t}}igg(x_t+eta_nrac{\partial}{\partial x_t}\log p_t\!(x_t)igg) & s_t\!\left(x_t,t
ight) \end{array}$$

Takeaway:

- 1) Diffusion Models learn gradient of $p_t(x)$: $\frac{\partial}{\partial x_t} \log p_t(x_t)$
- We can not sample from data distribution directly, but, we can sample from Gaussian, and gradually pushing it as a "real-like" image.

2. Memorization in Diffusion Models

Exact mem.

Partial mem.

Training Image

Training Image

Generated Image

"Living in the Light with Ann Graham Lotz"

"Plattville Green Area Rug by Andover Mills"

Image credit: https://arxiv.org/pdf/2407.21720

3. What does it mean to be memorized?

Generated Image

4. How can we detect it?

$$\frac{1}{\sigma_t} s_t(x_t,t) = \frac{\partial}{\partial x_t} \log p_t(x_t)$$

$$\left|rac{\partial}{\partial x_t}s_t(x_t,t)
ight| - \left|rac{\partial^2}{\partial x_t^2}{
m log}\, p_t(x_t)
ight|$$

Hessian Eigenvalues tell Curvature:

- $\lambda \geq 0$: Concave downward or Flat
- λ < 0: Concave upward (Key for finding peaks)

Hessian Eigenvalues tell Curvature:

- $\lambda > 0$: Concave downward or Flat
- λ < 0: Concave upward (Key for finding peaks)

Memorized sample should reveal large negative eigenvalues,

while non-memorized show positive eigenvalues

Eigenvalues in Stable Diffusion

But, doing **backpropagation** in Stable Diffusion is nonsense We use the **sum** of eigenvalues as a proxy!

Very cheap to compute.

$$\mathbb{E}ig[ig\|s_t(x_t,t)ig\|^2ig] = -\operatorname{Tr}ig(H_t(x_t,t)ig) = -\sum_{i=1}^{n}\lambda_i,$$

Under gaussian assumption,

$$\mathbb{E}ig[ig\|H_t(x_t,t)\,s_t(x_t,t)ig\|^2ig] = -\,\operatorname{Tr}ig(H_t(x_t,t)^3ig) = -\sum_{i=1}^{a}\lambda_i^3.$$

			SD v1.4		SD v2.0	
Method	Steps	\overline{n}	AUC	TPR@1%FPR	AUC	TPR@1%FPR
Tiled ℓ_2 (Carlini et al., 2023)	50	4	0.908	0.088	0.792	0.114
		16	0.94	0.232	0.907	0.114
LE (Ren et al., 2024)	1	1	0.846	0.116	0.848	0
		4	0.839	0.13	0.853	0
		16	0.832	0.124	0.851	0
AE (Ren et al., 2024)	50	1	0.606	0	0.809	0
		4	0.628	0	0.82	0
		16	0.598	0	0.817	0
BE (Chen et al., 2024)	50	1	0.986	0.95	0.983	0.908
		4	0.997	0.98	0.99	0.945
		16	0.997	0.982	0.99	0.949
$\ s^{\Delta}_{ heta}(\mathbf{x}_t)\ $ (Wen et al., 2024)	1	1	0.976	0.896	0.948	0.739
		4	0.992	0.944	0.98	0.876
		16	0.99	0.928	0.983	0.881
	5	1	0.991	0.932	0.969	0.885
		4	0.997	0.978	0.984	0.917
		16	0.998	0.982	0.987	0.931
	50	1	0.983	0.948	0.982	0.904
		4	0.996	0.982	0.99	0.949
		16	0.998	0.98	0.991	0.945
$\ H^{\Delta}_{ heta}(\mathbf{x}_T)s^{\Delta}_{ heta}(\mathbf{x}_T)\ ^2$ (Ours)	1	1	0.987	0.908	0.959	0.74
		4	0.998	0.982	0.991	0.895

5. How can we mitigate it?

Previous approaches,

- [1] Change text prompts
- [2] Put random tokens between prompts
- [3] Weaken text-conditioning during sampling

.

Degrade user utility and image quality!!

ODE samplers have 1 to 1 relationship between (Xt, Image)
Memorization is revealed even at the first timestep!

Why don't we just start sampling from Gaussian latent on less sharper landscape? (a.k.a Seed sampling)

$$\left\|H_{\Delta heta}(x_T)\, s_{\Delta heta}(x_T)
ight\|^2 - lpha \log p_G(x_T)$$

Sharpness measure

Gaussian regularization

6. Advertisement

Visit:

https://github.com/Dongjae0324/sharpness_memorization_diffusion and push "STAR"!

