

Team YSVnL

TTA-DAME: Test-Time Adaptation with Domain Augmentation and Model Ensemble for Dynamic Driving Conditions

Dongjae Jeon

Taeheon Kim

Seongwon Cho

Jonghyun Choi

Yonsei University

Different Setups of Domain Adaptation

	Domain Adaptation	Test-time Adaptation	Continual Test-time Adaptation
Accessibility to Source Domain Data	0	Х	X
Adaptation Time	Training	Inference	Inference
Continual shifting target domains	X (e.g Night)	X (e.g Night)	O (e.g Day => Night)

Continual Test-time Adaptation

Goal

• Adapt the pretrained model continuously to shifting domains.

SHIFT Dataset ^[1]

• Discrete, Continuous annotated images with various domains.

Train dataset example

[1] Sun, Tao, et al. "SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation", CVPR, 2022.

How To Use Unlabeled Data for Training?

Generating pseudo labels could change into supervised task.

Mean-teacher^[1]

: EMA teacher (ensemble of prev. models) generate pseudo labels.

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results." Advances in neural information processing systems 30 (2017).

Domain Shift Error Accumulation

: Mean-Teacher generates poor labels on continuously shifting domains. Vicious cycle break down entire training.

Over Adaptation Hinders Adaptability

: Strong adaptation to a specific domain restricts adaptability^[1] Prefer generalizable weights to domain specific weights.

- Adaptation from initial parameter to domain A.
 - Adaptation from domain *A* to domain *B*.
- Direct adaptation from initial parameter to domain *B*.
 (Preferred)

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Stochastic Restoration^[1] To Mitigate Issues

: Randomly resets the weights from student model to initial(pretrained) model

- Adaptation from initial parameter to domain A.
- Adaptation from domain A to domain B.
- Direct adaptation from initial parameter to domain B.
 - Stochastic restoration to initial parameter θ_0^*

Method	AP(%)	AR(%)
Baseline (DINO[12] with MT)	47.1	57.7
+ Stochastic Restoration	47.8	58.4

PARIS

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Mean-Teacher With Stochastic Restoration Is Adapted As A Main Model

Time

Model Ensemble

Mean-Teacher TTA

ICC

PARIS

V23

Time [:]

Two Distinguished Models for Additional Support

Retaining Source Knowledge Is Important

Validation data example

- Need to keep source knowledge along the sequences.
- Stochastic Restoration does not alleviate catastrophic forgetting

Source knowledge is regained via Ensemble

Two fixed models support the main model

- DINO^[1] (multi-domain) (Adapt)
- YOLOv8 (source) (Fixed)
- DINO^[1] (source) (Fixed)

Gradual Contribution Equalization (GCE)

- Gradually weights to DINO(source) to prevent catastrophic forgetting of source knowledge.
- Equalize contribution of all models at last.

Model Suffers The Most On Night Domain

- We have evaluated possible target domains using data augmentation.
- Among them, model suffers in "Night" most.

PARIS

Night Images Are Separated By Domain Discriminator

Time :

Domain Augmentation for Specialization

- Utilized 'automold' library to transform images into diverse time & weather conditions.
- Used in DINO(multi-domain), DINO(night), Domain Discriminator training.

Classify the input image as day / night using the trained domain discriminator.

:

If the domain is '**night**,' the trained nighttime detector is employed for predictions.

Time

If not '**night**,' the Mean-teacher model combines with multiple detectors for predictions.

Adapts the student model with pseudo labels generated from Mean-Teacher

The Mean-Teacher model adapts through EMA

Time

Source model plays a role in preventing catastrophic forgetting

Time :

Periodically reset the student's weights to prevent error accumulation and over-adapting

Time [:]

Quantitative Results

Method	AP(%)	AR(%)
Baseline (DINO[12] with MT)	47.1	57.7
+ Stochastic Restoration	47.8	58.4
+ Domain Augmentation	48.1	58.9
+ Domain Discriminator	48.5	59.1
+ Model Ensemble (TTA-DAME)	49.4	62.2

2.3%p increase in Average Precision4.5%p increase in Average Recall

Qualitative Results

Baseline (DINO MT)

pedestrian

ICCV23

PARIS

Q&A

Summary (backup)

Integrating Mean Teacher Method & Stochastic Restoration

Time