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Different Setups of Domain Adaptation

Domain Adaptation Test-time Adaptation Continual Test-time 
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SHIFT Dataset [1]

• Discrete, Continuous annotated images with various domains.

Goal
• Adapt the pretrained model continuously to shifting domains.

[1] Sun, Tao, et al. "SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation”, CVPR, 2022.

Train dataset example

Continual Test-time Adaptation



How To Use Unlabeled Data for Training?

Generating pseudo labels could change into supervised task.

Mean-teacher [1] 

: EMA teacher (ensemble of prev. models) generate pseudo labels.

Update

Student Model EMA Teacher 
Model

Input Frame Adapts to each 
incoming frame

Consistency
Loss

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results." Advances in neural information processing systems 30 (2017).



: Mean-Teacher generates poor labels on continuously shifting domains.
Vicious cycle break down entire training. 

Domain Shift Error Accumulation

Teacher Student

Weak Domain Shift
(Accurate)

Teacher
(degraded)

Continuous Domain Shift
(Error-prone)

Vicious Cycle



: Strong adaptation to a specific domain restricts adaptability[1]

Prefer generalizable weights to domain specific weights.

Over Adaptation Hinders Adaptability

𝜽𝟎∗

𝜽𝑨∗ 𝜽𝑩∗

Adaptation from initial parameter to domain 𝐴. 

Adaptation from domain 𝐴 to domain 𝐵. 
Direct adaptation from initial parameter to domain 𝐵. 

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 2022.

(Preferred)



: Randomly resets the weights from student model to initial(pretrained) model

Stochastic Restoration[1] To Mitigate Issues

Adaptation from initial parameter to domain 𝐴. 

Adaptation from domain 𝐴 to domain 𝐵. 
Direct adaptation from initial parameter to domain 𝐵. 
Stochastic restoration to initial parameter 𝜽𝟎∗

𝜽𝟎∗

𝜽𝑨∗ 𝜽𝑩∗
restoration

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 2022.



Mean-Teacher With Stochastic Restoration
Is Adapted As A Main Model 

Transformer 
(multi-domain)

Mean-Teacher TTA

Student Detector

Update

Consistency Loss Stochastic
Restoration

Source Weights
(fixed)



Two Distinguished Models for Additional Support

Model Ensemble

Transformer 
(multi-domain)

YOLO

Transformer
(source)



Retaining Source Knowledge Is Important

• Need to keep source knowledge along the sequences.
• Stochastic Restoration does not alleviate catastrophic forgetting

Time

Validation data example

Returns to Source Domain



Two fixed models support the main model

Source knowledge is regained via Ensemble

• DINO [1] (multi-domain)   (Adapt)
• YOLOv8 (source)   (Fixed)
• DINO [1] (source)     (Fixed)

[1] Zhang, Hao, et al. "Dino: Detr with improved denoising anchor boxes for end-to-end object detection." arXiv preprint 
arXiv:2203.03605 (2022).

Gradual Contribution Equalization (GCE)
• Gradually weights to DINO(source) to prevent catastrophic forgetting 

of source knowledge.

• Equalize contribution of all models at last.

DINO 
(multi-domain)

YOLO

DINO
(source)



Model Suffers The Most On Night Domain
• We have evaluated possible target domains using data augmentation.
• Among them, model suffers in “Night” most. 

Transformer 
(multi-domain)

Rainy    (AP: 45.3)

Snowy   (AP: 42.1)

Night     (AP: 36.4)

…



Night Images Are Separated By Domain Discriminator

Domain
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day
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Domain Augmentation for Specialization
• Utilized ‘automold’ library to transform images into diverse time & weather 

conditions.
• Used in DINO(multi-domain), DINO(night), Domain Discriminator training.

[1] https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library

Source Domain Augmented Image

Domain Augmentation

+

Domain Discriminator
(EfficientNet-B7)

DINO(night)
DINO(multi-domain)



Classify the input image as day / night using the trained domain discriminator.

Summary
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If the domain is 'night,' the trained nighttime detector is employed for predictions.

Time

⋮

⋮

Domain
Discriminator

(fixed)

night

Model Ensemble

day

Transformer 
(multi-domain)

YOLO

Transformer
(source)

Transformer
(night)

Summary



Time

⋮

⋮

Domain
Discriminator

(fixed)

night

Model Ensemble

day

Transformer 
(multi-domain)

YOLO

Transformer
(source)

Transformer
(night)

Summary
If not 'night,' the Mean-teacher model combines with multiple detectors
for predictions.
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Adapts the student model with pseudo labels generated from 
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The Mean-Teacher model adapts through EMA
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Source model plays a role in preventing catastrophic forgetting
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Periodically reset the student's weights to prevent error accumulation 
and over-adapting
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Quantitative Results

2.3%p increase in Average Precision 
4.5%p increase in Average Recall



Qualitative Results

Baseline (DINO MT) TTA-DAME (Ours)



Q&A



Integrating Mean Teacher Method & Stochastic Restoration
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