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Different Setups of Domain Adaptation
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Continual Test-time Adaptation

Goal
« Adapt the pretrained model continuously to shifting domains.

SHIFT Dataset [
« Discrete, Continuous annotated images with various domains.

Train dataset example

[1] Sun, Tao, et al. "SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation”, CVPR, 2022.
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How To Use Unlabeled Data for Training?

Generating pseudo labels could change into supervised task.

Mean-teacher!']
. EMA teacher (ensemble of prev. models) generate pseudo labels.

Update
Student Model =MA Teacher
Model
Consistency
Loss
Input Frame Adapts to each

incoming frame

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results." Advances in neural information processing systems 30 (2017).
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Domain Shift Error Accumulation

: Mean-Teacher generates poor labels on continuously shifting domains.
Vicious cycle break down entire training.

Vicious Cycle

Teacher H

Continuous Domain Shift
(Error-prone)

Teacher |¢==)

Weak Domain Shift
(Accurate)




Over Adaptation Hinders Adaptability ICCVL5

: Strong adaptation to a specific domain restricts adaptability!']
Prefer generalizable weights to domain specific weights.

=mmp  Adaptation from initial parameter to domain A.
m==p Adaptation from domain A to domain B.

= » % Direct adaptation from initial parameter to domain B.
(Preferred)

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022.
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Stochastic Restorationl'l To Mitigate Issues

: Randomly resets the weights from student model to initial(pretrained) model

-
/ - \._ - = = % Adaptation from initial parameter to domain A.
\ O N = = » Adaptation from domain A to domain B.
restoration
\ i = = % Direct adaptation from initial parameter to domain B.
024 \ Vs Op ===p Stochastic restoration to initial parameter 6,
~ 7’
~ —-— o - -
Method AP(%) AR(%)
Baseline (DINO[12] with MT) 47.1 57.7
+ Stochastic Restoration 47.8 58.4

[1] Wang, Qin, et al. "Continual test-time domain adaptation." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022.




Mean-Teacher With Stochastic Restoration |qu23
Is Adapted As A Main Model
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Two Distinguished Models for Additional Support |qu23
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Retaining Source Knowledge Is Important

Validation data example_

S ETEIae

Returns to Source Domain

* Need to keep source knowledge along the sequences.
« Stochastic Restoration does not alleviate catastrophic forgetting




ICCV.5

Source knowledge is regained via Ensemble

Two fixed models support the main model // DINO x
: . (multi-domain)

« DINO! (multi-domain) (Adapt) > N

« YOLOVS (source) (Fixed) YOLO

 DINOI (source) (Fixed) \ <

DINO ]
Gradual Contribution Equalization (GCE) [&/

« Gradually weights to DINO(source) to prevent catastrophic forgetting
of source knowledge.

« Equalize contribution of all models at last.

[1] Zhang, Hao, et al. "Dino: Detr with improved denoising anchor boxes for end-to-end object detection." arXiv preprint
arXiv:2203.03605 (2022).




Model Suffers The Most On Night Domain ICCVS

* We have evaluated possible target domains using data augmentation.
 Among them, model suffers in “Night” most.
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Night Images Are Separated By Domain Discriminator
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Domain Augmentation for Specialization

 Utilized ‘automold’ library to transform images into diverse time & weather
conditions.
* Used in DINO(multi-domain), DINO(night), Domain Discriminator training.

. A r \
/ Domain Augmentation \ Domain Discriminator
= (EfficientNet-B7)
\ J
r )
DINO(night)
P Image/ - ! DINO(multi-domain) )

[1] https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
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Summary

Classify the input image as day / night using the trained domain discriminator.
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Summary

If the domain is 'night,’ the trained nighttime detector is employed for predictions.
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Summary

If not 'night,’' the Mean-teacher model combines with multiple detectors
for predictions.
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Summary

Adapts the student model with pseudo labels generated from
Mean-Teacher
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Summary

The Mean-Teacher model adapts through EMA
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Summary

Source model plays a role in preventing catastrophic forgetting
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Summary

Periodically reset the student's weights to prevent error accumulation
and over-adapting
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Quantitative Results

Method AP(%) AR(%)
Baseline (DINOJ[12] with MT) 47.1 57.7
+ Stochastic Restoration 47.8 58.4
+ Domain Augmentation 48.1 58.9
+ Domain Discriminator 48.5 59.1

+ Model Ensemble (TTA-DAME) 49.4 62.2

2.3%p increase in Average Precision
4.5%p increase in Average Recall




ICCV.5

Qualitative Results

Baseline (DINO MT) TTA-DAME (Ours)

1000 53.33 - 100.0 73.33

(from
baselme)

Precision Recall Precision Recall

B bus B motorcycle

B pedestrian car B bicycle
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Summary (backup) ICCVZS

Integrating Mean Teacher Method & Stochastic Restoration
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